211 research outputs found

    Robustness of Energy Landscape Controllers for Spin Rings under Coherent Excitation Transport

    Full text link
    The design and analysis of controllers to regulate excitation transport in quantum spin rings presents challenges in the application of classical feedback control techniques to synthesize effective control, and generates results in contradiction to the expectations of classical control theory. In this paper, we examine the robustness of controllers designed to optimize the fidelity of an excitation transfer to uncertainty in system and control parameters. We use the logarithmic sensitivity of the fidelity error as the measure of robustness, drawing on the classical control analog of the sensitivity of the tracking error. In our analysis we demonstrate that quantum systems optimized for coherent transport demonstrate significantly different correlation between error and the log-sensitivity depending on whether the controller is optimized for readout at an exact time T or over a time-window about T.Comment: 10 pages, 4 figures, 2 table

    Robustness of energy landscape control to dephasing

    Get PDF
    As shown in previous work, in some cases closed quantum systems exhibit a non-conventional absence of trade-off between performance and robustness in the sense that controllers with the highest fidelity can also provide the best robustness to parameter uncertainty. As the dephasing induced by the interaction of the system with the environment guides the evolution to a more classically mixed state, it is worth investigating what effect the introduction of dephasing has on the relationship between performance and robustness. In this paper we analyze the robustness of the fidelity error, as measured by the logarithmic sensitivity function, to dephasing processes. We show that introduction of dephasing as a perturbation to the nominal unitary dynamics requires a modification of the log-sensitivity formulation used to measure robustness about an uncertain parameter with nonzero nominal value used in previous work. We consider controllers optimized for a number of target objectives ranging from fidelity under coherent evolution to fidelity under dephasing dynamics to determine the extent to which optimizing for a specific regime has desirable effects in terms of robustness. Our analysis is based on two independent computations of the log-sensitivity: a statistical Monte Carlo approach and an analytic calculation. We show that despite the different log-sensitivity calculations employed in this study, both demonstrate that the log-sensitivity of the fidelity error to dephasing results in a conventional trade-off between performance and robustness

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Overcoming the barriers to greater public engagement

    Get PDF
    Integrating science communication training into an undergraduate research project encourages greater academic involvement in public engagement, maximizes audience size, and provides high-quality research data

    Is U.S. health care an appropriate system? A strategic perspective from systems science

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>Systems science provides organizational principles supported by biologic findings that can be applied to any organization; any incongruence indicates an incomplete or an already failing system. U.S. health care is commonly referred to as a system that consumes an ever- increasing percentage of the gross domestic product and delivers seemingly diminishing value.</p> <p>Objective</p> <p>To perform a comparative study of U.S. health care with the principles of systems science and, if feasible, propose solutions.</p> <p>Design</p> <p>General systems theory provides the theoretical foundation for this observational research.</p> <p>Main Outcome Measures</p> <p>A degree of compliance of U.S. health care with systems principles and its space-time functional location within the dynamic systems model.</p> <p>Results of comparative analysis</p> <p>U.S. health care is an incomplete system further threatened by the fact that it functions in the zone of chaos within the dynamic systems model.</p> <p>Conclusion</p> <p>Complying with systems science principles and the congruence of pertinent cycles, U.S. health care would likely dramatically improve its value creation for all of society as well as its resiliency and long-term sustainability.</p> <p>Immediate corrective steps could be taken: Prioritize and incentivize <it>health </it>over <it>care</it>; restore fiscal soundness by combining health and life insurance for the benefit of the insured and the payer; rebalance horizontal/providers and vertical/government hierarchies.</p

    Observing Virtual Arms that You Imagine Are Yours Increases the Galvanic Skin Response to an Unexpected Threat

    Get PDF
    Multi-modal visuo-tactile stimulation of the type performed in the rubber hand illusion can induce the brain to temporarily incorporate external objects into the body image. In this study we show that audio-visual stimulation combined with mental imagery more rapidly elicits an elevated physiological response (skin conductance) after an unexpected threat to a virtual limb, compared to audio-visual stimulation alone. Two groups of subjects seated in front of a monitor watched a first-person perspective view of slow movements of two virtual arms intercepting virtual balls rolling towards the viewer. One group was instructed to simply observe the movements of the two virtual arms, while the other group was instructed to observe the virtual arms and imagine that the arms were their own. After 84 seconds the right virtual arm was unexpectedly “stabbed” by a knife and began “bleeding”. This aversive stimulus caused both groups to show a significant increase in skin conductance. In addition, the observation-with-imagery group showed a significantly higher skin conductance (p<0.05) than the observation-only group over a 2-second period shortly after the aversive stimulus onset. No corresponding change was found in subjects' heart rates. Our results suggest that simple visual input combined with mental imagery may induce the brain to measurably temporarily incorporate external objects into its body image
    corecore